
1 Introduction

1.1 Overview
This application note aims to build a USB-CAN adapter where the USB data
retransmit to CAN-bus and vice versa. NXP LPC55S16 has a high-speed
USB port and CANFD controllers. HSUSB can reach up to 480 Mbit/s
transmission speed, which is enough for transmitting CANFD frame at highest
CAN baud rate.

To make the system easy to use and compatible with other devices, we use
USB CDC virtual COM port as communication interface with PC and a simple
ASCII protocol inherited from open-source project USBtinViewer.

2 Implementation

2.1 Overview
As shown in Figure 1, USB CDC uses two USB physical buck endpoints to transfer data between PC and MCU. Each endpoint
is responsible for uni-directional data transfer.

SDK already provides MCAN driver and USB Stack. In software, add two buffers for each pipe, one for USB -> CAN bus and the
other for CAN bus -> USB. To ensure the best performance, the two pipes are independent.

Figure 1. System block diagram

2.2 Related SDK example
Before continuing the task, we need the background knowledge of USB CDC and CAN usage. Fortunately, SDK provides
two examples.

• MCAN loopback example

Contents

1 Introduction......................................1
1.1 Overview......................................1
2 Implementation................................1
2.1 Overview......................................1
2.2 Related SDK example................. 1
2.3 Hardware..................................... 2
2.4 Serial communication protocol.....2
3 Hands on with USBtinViewer.......... 5
3.1 Connecting hardware to

USBtinViewer...............................6
4 Third-party and community

resources...9
5 Schematic of USB-CAN-adapter...10
6 Reference......................................10
7 Revision history.............................10

AN13515
USB CAN Adapter based on LPC55S16
Rev. 0 — 18 January 2022 Application Note

https://www.fischl.de/usbtin/#usbtinviewer

MCAN example is a simple CAN loopback example which demonstrates usage of LPC54608’s CAN module. This example
enables the internal loopback of CAN module and send a CAN frame. The CAN frame loops back into CAN receiver and MCU
displays any received CAN frames on UART terminal. To get familiar with this example, read the readme documentation and
run the example.

Example location: \boards\lpcxpresso55s16\driver_examples\mcan\loopback

• usb_device_cdc_vcom example

This example is USB CDC class example to enumerate USB as a communication device class. When USB enumeration
completes, a COM port pops out on the device. Any character sent through this COM port is loop back to display. See the
readme documentation for this example for how to install device driver and run the demo.

Example location: \boards\lpcxpresso55s16\usb_examples\usb_device_cdc_vcom\bm

Be familiar with above two examples before continue reading. Those two examples are building blocks for USB-CAN
adapter design.

2.3 Hardware
Table 1 describe GPIO pins used in USB-CAN adapter.

Table 1. GPIO pins used in USB-CAN adapter

GPIO Function Description

PIO1_2 CAN0_TX CAN bus signal

PIO1_3 CAN0_RX CAN bus signal

USB1_DM USB1_DM HSUSB DM

USB1_DP USB1_DP HSUSB DP

PIO0_29 UART_RXD Debug UART RXD

PIO0_30 UART_TXD Debug UART TXD

For full schematic, see Schematic of USB-CAN-adapter.

2.4 Serial communication protocol
USB-CAN adapter registers as a virtual serial port on the host computer. With simple ASCII commands, CAN bus configuration
can be controlled over this serial port. You can send/receive commands from any serial terminal program or from your
own program.

Table 2. ASCII protocol commands list:

ASCII commands Response Description

O[CR] [CR] Open CAN channel

C[CR] [CR] Close CAN channel

tiiildd..[CR] Transmit standard (11 bit) frame.

iii: Identifier in hexadecimal format (000-7FF)

l: Data length (0-8)

dd: Data byte value in hexadecimal format (00-FF)

Table continues on the next page...

NXP Semiconductors
Implementation

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 2 / 11

https://www.fischl.de/usbtin/
https://www.fischl.de/usbtin/

Table 2. ASCII protocol commands list: (continued)

ASCII commands Response Description

Sx[CR] Set baud rate

x: Bitrate id (0-8)

S0 = 10 kBaud

S1 = 20 kBaud

S2 = 50 kBaud

S3 = 100 kBaud

S4 = 125 kBaud

S5 = 250 kBaud

S6 = 500 kBaud

S7 = 800 kBaud

S8 = 1 MBaud

Tiiiiiiiildd..[CR] Transmit extended (29
bit) frame.

iiiiiiii: Identifier in hexadecimal
format (0000000-1FFFFFFF)

l: Data length (0-8) dd:

Data byte value in hexadecimal format (00-FF)

riiil[CR] Transmit standard RTR (11
bit) frame.

iii: Identifier in hexadecimal format (000-7FF)

l: Data length (0-8)

Riiiiiiiil[CR] Transmit extended RTR (29
bit) frame.

iiiiiiii: Identifier in hexadecimal
format (0000000-1FFFFFFF)

l: Data length (0-8)

mxxxxxxxx[CR Set acceptance filter mask

SJA1000 format (AM0..AM3).

Only first 11bit are relevant.

xxxxxxxx: Acceptance filter mask

Mxxxxxxxx[CR] Set acceptance filter code.

SJA1000 format (AC0..AC3).

Only first 11bit are relevant.

xxxxxxxx: Acceptance filter code

Example:

Set 10 kBaud, open CAN channel, send CAN message (id = 001 h, dlc = 4, data = 11 22 33 44), and close CAN.

Table 3. CAN message

Command Response

S0[CR] [CR]

O[CR] [CR]

Table continues on the next page...

NXP Semiconductors
Implementation

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 3 / 11

Table 3. CAN message (continued)

Command Response

t001411223344[CR] z[CR]

C[CR] [CR]

With a state machine, the software accepts serial stream from CDC port, parses the ASCII, and applies the command. Below lists
some of the important code snippet used in the software. For full source code, see AN13515SW.

• To send a CAN frame,

txFrame.xtd = kMCAN_FrameIDStandard;
txFrame.rtr = kMCAN_FrameTypeData;
txFrame.fdf = 0;
txFrame.brs = 0;
txFrame.dlc = len;
txFrame.id = id << STDID_OFFSET;
txFrame.data = buf;
txFrame.size = CAN_DATASIZE;

txXfer.frame = &txFrame;
txXfer.bufferIdx = 0;
MCAN_TransferSendNonBlocking(EXAMPLE_MCAN, &mcanHandle, &txXfer);

• To receive a CAN frame,

static void mcan_callback(CAN_Type *base, mcan_handle_t *handle, status_t status, uint32_t
result, void *userData)
{
 switch (status)
 {
 case kStatus_MCAN_RxFifo0Idle:
 {
 memcpy(rx_data, rxFrame.data, rxFrame.size);
 MCAN_TransferReceiveFifoNonBlocking(EXAMPLE_MCAN, 0, &mcanHandle, &rxXfer);
 can_rx_cb(rxFrame.id >> STDID_OFFSET, rx_data, rxFrame.dlc);
 }
 break;

 case kStatus_MCAN_TxIdle:
 {

 }
 break;

 default:
 break;
 }
}

• To send data via USB CDC,

void usbd_cdc_send(uint8_t *buf, uint32_t len)
{
 USB_DeviceCdcAcmSend(s_cdcVcom.cdcAcmHandle, USB_CDC_VCOM_BULK_IN_ENDPOINT, buf, len);
}

NXP Semiconductors
Implementation

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 4 / 11

• To receive data from USB CDC,

usb_status_t USB_DeviceCdcVcomCallback(class_handle_t handle, uint32_t event, void *param)
{
 switch (event)
 {
 …
 case kUSB_DeviceCdcEventRecvResponse:
 {
 if ((1 == s_cdcVcom.attach) && (1 == s_cdcVcom.startTransactions))
 {
 uint8_t rx_size;
 rx_size = epCbParam->length;
 {
 error = USB_DeviceCdcAcmRecv(handle, USB_CDC_VCOM_BULK_OUT_ENDPOINT,
cdc_rx_buf, g_UsbDeviceCdcVcomDicEndpoints[1].maxPacketSize);
 }

 cdc_rx_cb(cdc_rx_buf, rx_size);
 }
 }
 break;
 }
}

3 Hands on with USBtinViewer
To verify the functionality USB-CAN adapter, in this section, we use open-source software USBtinViewer and a commercial
USB-CAN-adapter (PCAN-USB).

USBtinViewer can be download from https://www.fischl.de/usbtin/#usbtinviewer.

We use PCAN-USB for commercial USB-CAN adapter and busmaster for software.

Busmaster can be download from https://rbei-etas.github.io/busmaster/.

Figure 2 shows the hardware test environment.

NXP Semiconductors
Hands on with USBtinViewer

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 5 / 11

https://www.fischl.de/usbtin/#usbtinviewer
https://rbei-etas.github.io/busmaster/

Figure 2. Test environment setup

3.1 Connecting hardware to USBtinViewer
1. Download USBtinViewer and connect the USB port of USB-CAN-adapter to the PC. A USB CDC COM port pops up.

The COM port number varies from PC to PC.

 NOTE

Figure 3. USB CDC port enumeration

Open USBtinViewer, select COM port and CAN baud rate (500 K in this example). Click Connect, and the USBtinViewer
returns the firmware information, as shown in Figure 4. The information means that connection succeeds.

NXP Semiconductors
Hands on with USBtinViewer

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 6 / 11

Figure 4. Connecting USB-CAN adapter to USBtin viewer

2. Open busmaster and connect PCAN-USB. Select 500 K baud rate, as shown in Figure 5.

Figure 5. Connecting PCAN-USB to busmaster

3. Send CAN data from USBtinViewer and received by busmaster.

Connect USB-CAN adapter and PCAN-USB. In the CAN TX box, at the bottom of USBtinViewer, enter the CAN message
ID, DLC, and data field. Click Send, and the USB-CAN adapter sends the CAN message.

NXP Semiconductors
Hands on with USBtinViewer

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 7 / 11

Figure 6. Sending CAN data from USBtinViewer and received by busmaster

In the Message window of busmaster, the same CAN message can be received, as shown in Figure 6.

4. Send CAN data from busmaster and verify by USBtinViewer.

In busmaster, open Transmit Window. Click the empty space under the Message Name column. Enter the new message
name, DLC, and frame data field. Click Send message, and the busmaster sends the CAN message. On USBtinViewer,
this CAN message can be monitored, as shown in Figure 8.

Figure 7. Sending CAN data from busmaster and received by USBtinViewer

NXP Semiconductors
Hands on with USBtinViewer

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 8 / 11

Figure 8. USBtinViewer received CAN message

4 Third-party and community resources
Many useful third-party resources are available on USBtin web page. It includes libraries and tools supporting USBtin. It provides
rich resources and supports varies programming languages.

Figure 9. Third-party tools support USBtin

NXP Semiconductors
Third-party and community resources

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 9 / 11

5 Schematic of USB-CAN-adapter

Figure 10. Schematic of USB-CAN-adapter

6 Reference
1. https://www.fischl.de/usbtin/#usbtinviewer

2. https://rbei-etas.github.io/busmaster/

7 Revision history

Rev. Date Description

0 18 January 2022 Initial release

NXP Semiconductors
Schematic of USB-CAN-adapter

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 10 / 11

https://www.fischl.de/usbtin/#usbtinviewer
https://rbei-etas.github.io/busmaster/

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at
the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all
information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer
is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision
Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2022. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 January 2022
Document identifier: AN13515

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Overview

	2 Implementation
	2.1 Overview
	2.2 Related SDK example
	2.3 Hardware
	2.4 Serial communication protocol

	3 Hands on with USBtinViewer
	3.1 Connecting hardware to USBtinViewer

	4 Third-party and community resources
	5 Schematic of USB-CAN-adapter
	6 Reference
	7 Revision history

