AN13515

USB CAN Adapter based on LPC55S16

Rev. 0 — 18 January 2022

1 Introduction

1.1 Overview

This application note aims to build a USB-CAN adapter where the USB data
retransmit to CAN-bus and vice versa. NXP LPC55S16 has a high-speed
USB port and CANFD controllers. HSUSB can reach up to 480 Mbit/s
transmission speed, which is enough for transmitting CANFD frame at highest

CAN baud rate.

To make the system easy to use and compatible with other devices, we use
USB CDC virtual COM port as communication interface with PC and a simple
ASCII protocol inherited from open-source project USBtinViewer.

2 Implementation

2.1 Overview

Application Note

Contents
1 Introduction..........ccceeeeeiieceenseceennnns 1
1.1 OVEIVIEW.ceeeeiiiiiirirreeeaes 1
2 Implementation...........cccccccivveenenn. 1
2.1 OVEIVIEW.coeeeiiiereeeeees 1
2.2 Related SDK example................. 1
2.3 Hardware............ccooocecniiiiiiienes 2
2.4 Serial communication protocaol.....2
3 Hands on with USBtinViewer.......... 5
3.1 Connecting hardware to
USBtinViewer.........cccccccovvvivvnnenns 6
4 Third-party and community
FESOUICES. .. .ucereereanmrereeersamrmeerensennes 9
5 Schematic of USB-CAN-adapter... 10
6 Reference..........cccovveeeinniiviiennnnn, 10
7 Revision history..........ccccococevinennn. 10

As shown in Figure 1, USB CDC uses two USB physical buck endpoints to transfer data between PC and MCU. Each endpoint

is responsible for uni-directional data transfer.

SDK already provides MCAN driver and USB Stack. In software, add two buffers for each pipe, one for USB -> CAN bus and the
other for CAN bus -> USB. To ensure the best performance, the two pipes are independent.

Figure 1. System block diagram

CAN_RX_BUFFER

CAN_TX_BUFFER

CAN_TX

2.2 Related SDK example

Before continuing the task, we need the background knowledge of USB CDC and CAN usage. Fortunately, SDK provides

two examples.

* MCAN loopback example

h o
P

https://www.fischl.de/usbtin/#usbtinviewer

NXP Semiconductors

Implementation

MCAN example is a simple CAN loopback example which demonstrates usage of LPC54608’s CAN module. This example
enables the internal loopback of CAN module and send a CAN frame. The CAN frame loops back into CAN receiver and MCU
displays any received CAN frames on UART terminal. To get familiar with this example, read the readme documentation and

run the example.

Example location: |boardsljpcxpresso55s 16ldriver_examplesimcanlloopback

* usb_device cdc_vcom example

This example is USB CDC class example to enumerate USB as a communication device class. When USB enumeration
completes, a COM port pops out on the device. Any character sent through this COM port is loop back to display. See the
readme documentation for this example for how to install device driver and run the demo.

Example location: |boardsllpcxpresso55s 16lusb_exampleslusb_device cdc vcomlbm

Be familiar with above two examples before continue reading. Those two examples are building blocks for USB-CAN

adapter design.

2.3 Hardware

Table 1 describe GPIO pins used in USB-CAN adapter.

Table 1. GPIO pins used in USB-CAN adapter

GPIO Function Description
PIOL 2 CANO_TX CAN bus signal
PIOL 3 CANO_RX CAN bus signal
USB1_DM USB1_DM HSUSB DM
USB1_DP USB1_DP HSUSB DP
PIOO0_29 UART_RXD Debug UART RXD
PIO0 30 UART TXD Debug UART TXD

For full schematic, see Schematic of USB-CAN-adapter.

2.4 Serial communication protocol

USB-CAN adapter registers as a virtual serial port on the host computer. With simple ASCIl commands, CAN bus configuration

can be controlled over this serial port. You can send/receive commands from any serial terminal program or from your

own program.

Table 2. ASCII protocol commands list:

ASCIl commands

Response

Description

O[CR] [CR] Open CAN channel
C[CR] [CR] Close CAN channel
iii: Identifier in hexadecimal format (000-7FF)
tiiildd..[CR] Transmit standard (11 bit) frame. | I: Data length (0-8)

dd: Data byte value in hexadecimal format (00-FF)

Table continues on the next page...

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022

Application Note

2/11

https://www.fischl.de/usbtin/
https://www.fischl.de/usbtin/

NXP Semiconductors

Table 2. ASCII protocol commands list: (continued)

Implementation

ASCIl commands

Response

Description

x: Bitrate id (0-8)
S0 = 10 kBaud
S1 =20 kBaud
S2 =50 kBaud
S3 =100 kBaud

SX[CR] Set baud rate
S4 =125 kBaud
S5 = 250 kBaud
S6 = 500 kBaud
S7 =800 kBaud
S8 = 1 MBaud
iiiiiiii: Identifier in hexadecimal
S——— Transmit extended (29 format (0000000-1FFFFFFF)
v bit) frame. I: Data length (0-8) dd:
Data byte value in hexadecimal format (00-FF)
HlICR] Transmit standard RTR (11 iii: Identifier in hexadecimal format (000-7FF)
bit) frame. I: Data length (0-8)
. iiiiiiii: 1dentifier in hexadecimal
RIiiiiil[CR] Transmit extended RTR (29 | format (0000000-1FFFFFFF)
bit) frame.
I: Data length (0-8)
SJA1000 format (AMO..AM3).
MXXXXXXXX[CR Set acceptance filter mask Only first 11bit are relevant.
xxxxxxxx: Acceptance filter mask
SJA1000 format (ACO..AC3).
Mxxxxxxxx[CR] Set acceptance filter code. Only first 11bit are relevant.

xxxxxxxx: Acceptance filter code

Example:

Set 10 kBaud, open CAN channel, send CAN message (id = 001 h, dic = 4, data = 11 22 33 44), and close CAN.

Table 3. CAN message

Command Response
SO[CR] [CR]
O[CR] [CR]

Table continues on the next page...

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022

Application Note

NXP Semiconductors

Implementation

Table 3. CAN message (continued)

Command Response
t001411223344[CR] Z[CR]
CICR] [CR]

With a state machine, the software accepts serial stream from CDC port, parses the ASCII, and applies the command. Below lists
some of the important code snippet used in the software. For full source code, see AN13515SW.

* To send a CAN frame,

txFrame.xtd = kMCAN_ FrameIDStandard;
txFrame.rtr = kMCAN FrameTypeData;
txFrame.fdf = 0;

txFrame.brs = 0;

txFrame.dlc = len;

txFrame.id = id << STDID OFFSET;

txFrame.data = buf;
txFrame.size = CAN DATASIZE;

txXfer.frame = &txFrame;
txXfer.bufferIdx = 0;
MCAN TransferSendNonBlocking (EXAMPLE MCAN, &mcanHandle, &txXfer);

* To receive a CAN frame,

static void mcan callback (CAN Type *base, mcan_handle t *handle, status_t status, uint32 t
result, void *userData)
{

switch (status)

{
case kStatus MCAN RxFifoOIdle:

{
memcpy (rx_data, rxFrame.data, rxFrame.size);
MCAN TransferReceiveFifoNonBlocking (EXAMPLE MCAN, 0, &mcanHandle, &rxXfer);
can_rx cb(rxFrame.id >> STDID OFFSET, rx data, rxFrame.dlc);
}

break;

case kStatus MCAN TxIdle:
{

break;

default:
break;

* To send data via USB CDC,

void usbd cdc_send(uint8 t *buf, uint32 t len)

{
USB_DeviceCdcAcmSend (s_cdcVcom.cdcAcmHandle, USB_CDC_VCOM BULK IN_ENDPOINT, buf, len);

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 4/11

NXP Semiconductors

Hands on with USBtinViewer
» To receive data from USB CDC,

usb_status t USB DeviceCdcVcomCallback(class handle t handle, uint32 t event, void *param)
{

switch (event)

{

case kUSB DeviceCdcEventRecvResponse:
{
if ((1 == s_cdcVcom.attach) && (1 == s cdcVcom.startTransactions))
{
uint8 t rx size;
rx_size = epCbParam->length;
{
error = USB_DeviceCdcAcmRecv (handle, USB_CDC_VCOM BULK_OUT ENDPOINT,
cdc_rx buf, g UsbDeviceCdcVcomDicEndpoints[1l].maxPacketSize);

}

cdc_rx cb(cdc_rx buf, rx size);

break;

3 Hands on with USBtinViewer

To verify the functionality USB-CAN adapter, in this section, we use open-source software USBtinViewer and a commercial
USB-CAN-adapter (PCAN-USB).

USBtinViewer can be download from https://www.fischl.de/usbtin/#usbtinviewer.
We use PCAN-USB for commercial USB-CAN adapter and busmaster for software.
Busmaster can be download from https://rbei-etas.github.io/busmaster/.

Figure 2 shows the hardware test environment.

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 5/11

https://www.fischl.de/usbtin/#usbtinviewer
https://rbei-etas.github.io/busmaster/

NXP Semiconductors

Hands on with USBtinViewer

USE TT USE

W‘JEIL'htznhrr;.l"r

1200hm

§ CANH $
« CAN L
PCAN-USB LPC55516 USB-CAN-adapter

Figure 2. Test environment setup

3.1 Connecting hardware to USBtinViewer
1. Download USBtinViewer and connect the USB port of USB-CAN-adapter to the PC. A USB CDC COM port pops up.

NOTE
The COM port number varies from PC to PC.

v @@ Ports (COM & LPT)
§ Virtual Com Port (COM69)

Figure 3. USB CDC port enumeration

Open USBtinViewer, select COM port and CAN baud rate (500 K in this example). Click Connect, and the USBtinViewer
returns the firmware information, as shown in Figure 4. The information means that connection succeeds.

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022

Application Note 6/11

NXP Semiconductors

Hands on with USBtinViewer

M, USBtinViewer 1.3.1

COME9

Trace | Monitor

Clear Follow

a x

=

MoT

Time (ms) | Type | Id | DLC | Data

o | Connected to USBtin (FW18/HW10, SN: 234) |
001 8 1 | 22 | 33 44 | 55 | 66 |77 [JEt [JRTR
100181122334455667788 Send

Figure 4. Connecting USB-CAN adapter to USBtin viewer

2. Open busmaster and connect PCAN-USB. Select 500 K baud rate, as shown in Figure 5.

Hardware Selection

&vailable CAN hardware Configured CAN Hardware

Hardware Hardware

=
L]

<«

Channel
Channel 1

? X
Hardware Details
Driver|D: 0
Firmware : 1.2.0.4
CaN
Mode: Nomal R
T-Resistor. 120 Ohm >
BaudRate: 500000 bps
Data BaudRate: 5000000 bps
AUTOSET Advanced

Cancel

Figure 5. Connecting PCAN-USB to busmaster

3. Send CAN data from USBtinViewer and received by busmaster.

Connect USB-CAN adapter and PCAN-USB. In the CAN TX box, at the bottom of USBtinViewer, enter the CAN message
ID, DLC, and data field. Click Send, and the USB-CAN adapter sends the CAN message.

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022

Application Note

7/11

NXP Semiconductors

Hands on with USBtinViewer

#, USEti 3" Q0E)* BUSMASTER - o x
= 500000 — (ep—— | cear | [Foiow | = CAN | 1939 UN View Tools Help Y I
e E - o ¥ o 24
i =t | 0 s s W W loC | ol &2 V4
Time (ms) [Tee |1 DLC | Data | | Disconnect| Driver Channet Database Network Signal Filters Message Signal Logging | Simulation Diagnostics
9800 [001 8 1122 33445566 77 B8 Selection - Configuration e Statistics Graph~ Window~ Watch - = ‘Window: -
11688 L 001h 7 1M223344556877 Hardware Configuration Database Measurement Windows Diagnostics
== an -
Tine Te/Rx Channal Msg D Hessags DLC Data Byte(s)
12:16:0 Rx 1 s 0x001 0=l 8 11 22 33 44 55 66 77 88
12:16:1 Rx 1 s 0x001 0x1 ? 11 22 33 44 55 66 77
12:16:1 Rx 1 s 0x001 0x1 6 11 22 33 44 55 66
oo aana @ @mo =k e)
Tor1ET1EZI4455eG L Config Fil @ CAN Recording... @ 11939 Recording.. 1 Channeifs) - BUSMUST USB-CAN[|
Figure 6. Sending CAN data from USBtinViewer and received by busmaster

In the Message window of busmaster, the same CAN message can be received, as shown in Figure 6.

4. Send CAN data from busmaster and verify by USBtinViewer.

In busmaster, open Transmit Window. Click the empty space under the Message Name column. Enter the new message
name, DLC, and frame data field. Click Send message, and the busmaster sends the CAN message. On USBtinViewer,
this CAN message can be monitored, as shown in Figure 8.

T 2adeHep@ B 7

Signal Filters Message Signal Logging| Transmit | Node Replay Waveform Test Automation @ Diagnostics

Graph~ Window~ Watch ~ ~ Window fimulation ~ Messages~ Executor
Measurement Windows Simulation Windows Diagnostics
1
.| % Configure Transmission Messages - CAN

Tx Frame List

T oo

Press "Send Message™ button to transmit selected message. Delete Delete Al
Data Byte View (HEX)

Index 00 01 02 03 04 05 06 07

000 00 01 02 03 04 0s 06 07

Figure 7. Sending CAN data from busmaster and received by USBtinViewer

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 8/11

NXP Semiconductors

Third-party and community resources

M, USBtinViewer 1.3.1 — Od x
COME9 500000 ACTIVE Disconnect Follow
Time (ms) | Type Id DLC Data =
405056 © 123h & 00010202 04050607

= ke
001 6 11 | (22 | [33 | a4 | (55 |[66 | 77 @e [JEdt [JRTR
t0016112233445566 Send

T
Figure 8. USBtinViewer received CAN message

4 Third-party and community resources

Many useful third-party resources are available on USBtin web page. It includes libraries and tools supporting USBtin. It provides
rich resources and supports varies programming languages.

Third party and community projects - Software supporting USBtin

« B2 pyUSBtin - Python implementation of the USBtin API

« ¥2= CsharpUSBtinLib - C# USBTin library

» 52 CANFlasherUTNL - Bootloader GUI for NXP LPC11C22/24 devices

» 32 CANToolz - Framework for analysing CAN networks and devices

» 52 CANopen API for Windows (C++, C#/.NET) by Datalink Engineering

o 52 UsbTinQt - Qt application written in C++

s ¥ CANcool - Open Source CAN bus Analyser and Simulation Software (Pascal / Delphi 7)

Figure 9. Third-party tools support USBtin

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022
Application Note 9/11

NXP Semiconductors

5 Schematic of USB-CAN-adapter

Schematic of USB-CAN-adapter

ore
n
e o N v - T — o pyromeen |
i 1 02 Ui 1 k. o
1 f 4 umor a2 2 “F
) s
g
oo % s umon e T 2 | es i
SPORIEAHT ail s i oravi_ FIT0R 03 Npmeo "
3 lee ne
e
s
2 suacANB 0O
opava opas
3 us 7 CAN_H 94
: T
W CLIK C4_||04uF | CANO_TXDR4 1K 1 8 1
— %H o Yl oup. I
RESET. 2 GND CAN_H =
S I TERDER 12 o
e omvL
Il = HEADER_1x6 CAND RXDRE K 4 g - i
oanoome 4]
HEADER 5 RXD Ne
TmonoT
b o k]
oes
. 7 ke s "
== 10K K1
u 7 T T T
.
2 meser 1
RESETN = ISP_MODE T =
D L P— : 1 : mow (P ey,
e o =
2 o2 He .
B pomn el w83 o i
Isp WooE<—-| MOO4TNS woozs (£ B
S " 2l 2
ucom s a1 VoA
)
H—gr| PIO0E
3] Picoarecven B vss.00DC Q—{w L) S L e e
e = ity E T T T T
il o 3
Fom vam L T P 3 = Ri0
a4 ViR oht = Re
T B iAmoco 2 e
& picomterocos oFgs
L | et o o H
%50 PloTiiAckPo_C Used DM 57— Reser Rz gk | TTS 4
S pica UsBupp 02 X Reser Rk 4 I 2
S8 piooz; USED 33 |21 18 alJ
s PIOOC: 27 W T =
3 e use v 1
2 piog23pco 0 usB1 ves [ol v u
<] pioo’: USB VES 1 xet 1 e &
53T pia USET_VBUS #53—pssom——PF -
5101 piga USB1_ DM 2 —
fomculc Ve b [- Tr 3
wxmr o] A B T i
TRRTSTRD 8| P10 XTALIM N [r——— o
TR B8 Y e —
ST He Stocn 3 &
A 3 xraan A
sei{ pror 0o 11 e ximey 5
o n T
cane.mo <1 =
R e voo_pis |25 =,
o ohc - o] o e
;o itle
Lpessaia_uss_oANFD
Uitz
o | ey rwn
. : R i ———

Figure 10. Schematic of USB-CAN-adapter

6 Reference

1. https://www.fischl.de/usbtin/#usbtinviewer

2. https://rbei-etas.github.io/busmaster/

7 Revision history

Rev. Date

Description

0 18 January 2022

Initial release

USB CAN Adapter based on LPC55S16 , Rev. 0, 18 January 2022

Application Note

10/11

https://www.fischl.de/usbtin/#usbtinviewer
https://rbei-etas.github.io/busmaster/

How To Reach Us
Home Page:
nxp.com

Web Support:

nxp.com/support

arm

Limited warranty and liability — Information in this document is provided solely to enable system and software implementers to use NXP
products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on
the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets and/or
specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including
“typicals,” must be validated for each customer application by customer's technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at

the following address: nxp.com/SalesTermsandConditions.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including
without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all

information supplied prior to the publication hereof.

Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities. Customer

is responsible for the design and operation of its applications and products throughout their lifecycles to reduce the effect of these
vulnerabilities on customer’s applications and products. Customer’s responsibility also extends to other open and/or proprietary
technologies supported by NXP products for use in customer’s applications. NXP accepts no liability for any vulnerability. Customer
should regularly check security updates from NXP and follow up appropriately. Customer shall select products with security features
that best meet rules, regulations, and standards of the intended application and make the ultimate design decisions regarding its
products and is solely responsible for compliance with all legal, regulatory, and security related requirements concerning its products,
regardless of any information or support that may be provided by NXP. NXP has a Product Security Incident Response Team
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of
NXP products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE, GREENCHIP, HITAG,
ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE
ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET, TRENCHMOS,
UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis,
Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor Expert, QorlQ, QorlQ Qonverge, SafeAssure, the SafeAssure logo,
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower,
TurboLink, EdgeScale, EdgeLock, elQ, and Immersive3D are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight,
Cortex, DesignStart, DynamlQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb,
TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, uVision, Versatile are trademarks or registered trademarks of Arm
Limited (or its subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,
designs and trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power
Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org. M, M Mobileye and other Mobileye trademarks or logos appearing herein are trademarks of Mobileye Vision

Technologies Ltd. in the United States, the EU and/or other jurisdictions.

© NXP B.V. 2022. All rights reserved.
For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 18 January 2022
Document identifier: AN13515

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Overview

	2 Implementation
	2.1 Overview
	2.2 Related SDK example
	2.3 Hardware
	2.4 Serial communication protocol

	3 Hands on with USBtinViewer
	3.1 Connecting hardware to USBtinViewer

	4 Third-party and community resources
	5 Schematic of USB-CAN-adapter
	6 Reference
	7 Revision history

