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1 Introduction

1.1 Overview

This application note aims to build a USB-CAN adapter where the USB data
retransmit to CAN-bus and vice versa. NXP LPC55S16 has a high-speed
USB port and CANFD controllers. HSUSB can reach up to 480 Mbit/s
transmission speed, which is enough for transmitting CANFD frame at highest

CAN baud rate.

To make the system easy to use and compatible with other devices, we use
USB CDC virtual COM port as communication interface with PC and a simple
ASCII protocol inherited from open-source project USBtinViewer.

2 Implementation

2.1 Overview
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As shown in Figure 1, USB CDC uses two USB physical buck endpoints to transfer data between PC and MCU. Each endpoint

is responsible for uni-directional data transfer.

SDK already provides MCAN driver and USB Stack. In software, add two buffers for each pipe, one for USB -> CAN bus and the
other for CAN bus -> USB. To ensure the best performance, the two pipes are independent.

Figure 1. System block diagram
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2.2 Related SDK example

Before continuing the task, we need the background knowledge of USB CDC and CAN usage. Fortunately, SDK provides

two examples.

* MCAN loopback example
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MCAN example is a simple CAN loopback example which demonstrates usage of LPC54608’s CAN module. This example
enables the internal loopback of CAN module and send a CAN frame. The CAN frame loops back into CAN receiver and MCU
displays any received CAN frames on UART terminal. To get familiar with this example, read the readme documentation and

run the example.

Example location: |boardsljpcxpresso55s 16ldriver_examplesimcanlloopback

* usb_device cdc_vcom example

This example is USB CDC class example to enumerate USB as a communication device class. When USB enumeration
completes, a COM port pops out on the device. Any character sent through this COM port is loop back to display. See the
readme documentation for this example for how to install device driver and run the demo.

Example location: |boardsllpcxpresso55s 16lusb_exampleslusb_device cdc vcomlbm

Be familiar with above two examples before continue reading. Those two examples are building blocks for USB-CAN

adapter design.

2.3 Hardware

Table 1 describe GPIO pins used in USB-CAN adapter.

Table 1. GPIO pins used in USB-CAN adapter

GPIO Function Description
PIOL 2 CANO_TX CAN bus signal
PIOL 3 CANO_RX CAN bus signal
USB1_DM USB1_DM HSUSB DM
USB1_DP USB1_DP HSUSB DP
PIOO0_29 UART_RXD Debug UART RXD
PIO0 30 UART TXD Debug UART TXD

For full schematic, see Schematic of USB-CAN-adapter.

2.4 Serial communication protocol

USB-CAN adapter registers as a virtual serial port on the host computer. With simple ASCIl commands, CAN bus configuration

can be controlled over this serial port. You can send/receive commands from any serial terminal program or from your

own program.

Table 2. ASCII protocol commands list:

ASCIl commands

Response

Description

O[CR] [CR] Open CAN channel
C[CR] [CR] Close CAN channel
iii: Identifier in hexadecimal format (000-7FF)
tiiildd..[CR] Transmit standard (11 bit) frame. | I: Data length (0-8)

dd: Data byte value in hexadecimal format (00-FF)

Table continues on the next page...
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Table 2. ASCII protocol commands list: (continued)

Implementation

ASCIl commands

Response

Description

x: Bitrate id (0-8)
S0 = 10 kBaud
S1 =20 kBaud
S2 =50 kBaud
S3 =100 kBaud

SX[CR] Set baud rate
S4 =125 kBaud
S5 = 250 kBaud
S6 = 500 kBaud
S7 =800 kBaud
S8 = 1 MBaud
iiiiiiii: Identifier in hexadecimal
S——— Transmit extended (29 format (0000000-1FFFFFFF)
v bit) frame. I: Data length (0-8) dd:
Data byte value in hexadecimal format (00-FF)
HlICR] Transmit standard RTR (11 iii: Identifier in hexadecimal format (000-7FF)
bit) frame. I: Data length (0-8)
. iiiiiiii: 1dentifier in hexadecimal
RIiiiiil[CR] Transmit extended RTR (29 | format (0000000-1FFFFFFF)
bit) frame.
I: Data length (0-8)
SJA1000 format (AMO..AM3).
MXXXXXXXX[CR Set acceptance filter mask Only first 11bit are relevant.
xxxxxxxx: Acceptance filter mask
SJA1000 format (ACO..AC3).
Mxxxxxxxx[CR] Set acceptance filter code. Only first 11bit are relevant.

xxxxxxxx: Acceptance filter code

Example:

Set 10 kBaud, open CAN channel, send CAN message (id = 001 h, dic = 4, data = 11 22 33 44), and close CAN.

Table 3. CAN message

Command Response
SO[CR] [CR]
O[CR] [CR]

Table continues on the next page...
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Table 3. CAN message (continued)

Command Response
t001411223344[CR] Z[CR]
CICR] [CR]

With a state machine, the software accepts serial stream from CDC port, parses the ASCII, and applies the command. Below lists
some of the important code snippet used in the software. For full source code, see AN13515SW.

* To send a CAN frame,

txFrame.xtd = kMCAN_ FrameIDStandard;
txFrame.rtr = kMCAN FrameTypeData;
txFrame.fdf = 0;

txFrame.brs = 0;

txFrame.dlc = len;

txFrame.id = id << STDID OFFSET;

txFrame.data = buf;
txFrame.size = CAN DATASIZE;

txXfer.frame = &txFrame;
txXfer.bufferIdx = 0;
MCAN TransferSendNonBlocking (EXAMPLE MCAN, &mcanHandle, &txXfer);

* To receive a CAN frame,

static void mcan callback (CAN Type *base, mcan_handle t *handle, status_t status, uint32 t
result, void *userData)
{

switch (status)

{
case kStatus MCAN RxFifoOIdle:

{
memcpy (rx_data, rxFrame.data, rxFrame.size);
MCAN TransferReceiveFifoNonBlocking (EXAMPLE MCAN, 0, &mcanHandle, &rxXfer);
can_rx cb(rxFrame.id >> STDID OFFSET, rx data, rxFrame.dlc);
}

break;

case kStatus MCAN TxIdle:
{

break;

default:
break;

* To send data via USB CDC,

void usbd cdc_send(uint8 t *buf, uint32 t len)

{
USB_DeviceCdcAcmSend (s_cdcVcom.cdcAcmHandle, USB_CDC_VCOM BULK IN_ENDPOINT, buf, len);
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» To receive data from USB CDC,

usb_status t USB DeviceCdcVcomCallback(class handle t handle, uint32 t event, void *param)
{

switch (event)

{

case kUSB DeviceCdcEventRecvResponse:
{
if ((1 == s_cdcVcom.attach) && (1 == s cdcVcom.startTransactions))
{
uint8 t rx size;
rx_size = epCbParam->length;
{
error = USB_DeviceCdcAcmRecv (handle, USB_CDC_VCOM BULK_OUT ENDPOINT,
cdc_rx buf, g UsbDeviceCdcVcomDicEndpoints[1l].maxPacketSize);

}

cdc_rx cb(cdc_rx buf, rx size);

break;

3 Hands on with USBtinViewer

To verify the functionality USB-CAN adapter, in this section, we use open-source software USBtinViewer and a commercial
USB-CAN-adapter (PCAN-USB).

USBtinViewer can be download from https://www.fischl.de/usbtin/#usbtinviewer.
We use PCAN-USB for commercial USB-CAN adapter and busmaster for software.
Busmaster can be download from https://rbei-etas.github.io/busmaster/.

Figure 2 shows the hardware test environment.
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Hands on with USBtinViewer
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Figure 2. Test environment setup

3.1 Connecting hardware to USBtinViewer
1. Download USBtinViewer and connect the USB port of USB-CAN-adapter to the PC. A USB CDC COM port pops up.

NOTE
The COM port number varies from PC to PC.

v @@ Ports (COM & LPT)
§ Virtual Com Port (COM69)

Figure 3. USB CDC port enumeration

Open USBtinViewer, select COM port and CAN baud rate (500 K in this example). Click Connect, and the USBtinViewer
returns the firmware information, as shown in Figure 4. The information means that connection succeeds.
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Figure 4. Connecting USB-CAN adapter to USBtin viewer

2. Open busmaster and connect PCAN-USB. Select 500 K baud rate, as shown in Figure 5.

Hardware Selection

&vailable CAN hardware Configured CAN Hardware

Hardware Hardware

=
L]
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? X
Hardware Details
Driver|D: 0
Firmware : 1.2.0.4
CaN
Mode: Nomal R
T-Resistor. 120 Ohm >
BaudRate: 500000 bps
Data BaudRate: 5000000 bps
AUTOSET Advanced

Cancel

Figure 5. Connecting PCAN-USB to busmaster

3. Send CAN data from USBtinViewer and received by busmaster.

Connect USB-CAN adapter and PCAN-USB. In the CAN TX box, at the bottom of USBtinViewer, enter the CAN message
ID, DLC, and data field. Click Send, and the USB-CAN adapter sends the CAN message.
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Figure 6. Sending CAN data from USBtinViewer and received by busmaster

In the Message window of busmaster, the same CAN message can be received, as shown in Figure 6.

4. Send CAN data from busmaster and verify by USBtinViewer.

In busmaster, open Transmit Window. Click the empty space under the Message Name column. Enter the new message
name, DLC, and frame data field. Click Send message, and the busmaster sends the CAN message. On USBtinViewer,
this CAN message can be monitored, as shown in Figure 8.
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Graph~ Window~ Watch ~ ~ Window fimulation ~  Messages~ Executor
Measurement Windows Simulation Windows Diagnostics
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T oo
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Data Byte View (HEX)
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Figure 7. Sending CAN data from busmaster and received by USBtinViewer
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Figure 8. USBtinViewer received CAN message

4 Third-party and community resources

Many useful third-party resources are available on USBtin web page. It includes libraries and tools supporting USBtin. It provides
rich resources and supports varies programming languages.

Third party and community projects - Software supporting USBtin

« B2 pyUSBtin - Python implementation of the USBtin API

« ¥2= CsharpUSBtinLib - C# USBTin library

» 52 CANFlasherUTNL - Bootloader GUI for NXP LPC11C22/24 devices

» 32 CANToolz - Framework for analysing CAN networks and devices

» 52 CANopen API for Windows (C++, C#/.NET) by Datalink Engineering

o 52 UsbTinQt - Qt application written in C++

s ¥ CANcool - Open Source CAN bus Analyser and Simulation Software (Pascal / Delphi 7)

Figure 9. Third-party tools support USBtin
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5 Schematic of USB-CAN-adapter

Schematic of USB-CAN-adapter
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Figure 10. Schematic of USB-CAN-adapter
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